49,040 research outputs found

    Classical singularities and Semi-Poisson statistics in quantum chaos and disordered systems

    Full text link
    We investigate a 1D disordered Hamiltonian with a non analytical step-like dispersion relation whose level statistics is exactly described by Semi-Poisson statistics(SP). It is shown that this result is robust, namely, does not depend neither on the microscopic details of the potential nor on a magnetic flux but only on the type of non-analyticity. We also argue that a deterministic kicked rotator with a non-analytical step-like potential has the same spectral properties. Semi-Poisson statistics (SP), typical of pseudo-integrable billiards, has been frequently claimed to describe critical statistics, namely, the level statistics of a disordered system at the Anderson transition (AT). However we provide convincing evidence they are indeed different: each of them has its origin in a different type of classical singularities.Comment: typos corrected, 4 pages, 3 figure

    Universality in quantum chaos and the one parameter scaling theory

    Full text link
    We adapt the one parameter scaling theory (OPT) to the context of quantum chaos. As a result we propose a more precise characterization of the universality classes associated to Wigner-Dyson and Poisson statistics which takes into account Anderson localization effects. Based also on the OPT we predict a new universality class in quantum chaos related to the metal-insulator transition and provide several examples. In low dimensions it is characterized by classical superdiffusion or a fractal spectrum, in higher dimensions it can also have a purely quantum origin as in the case of disordered systems. Our findings open the possibility of studying the metal insulator transition experimentally in a much broader type of systems.Comment: 4 pages, 2 figures, acknowledgment added, typos correcte

    KIC 9821622: An interesting lithium-rich giant in the Kepler field

    Get PDF
    We report the discovery of a new exceptional young lithium-rich giant, KIC 9821622, in the \textit{Kepler} field that exhibits an unusually large enhancement of α\alpha, Fe-peak, and \textit{r}-process elements. From high-resolution spectra obtained with GRACES at Gemini North, we derived fundamental parameters and detailed chemical abundances of 23 elements from equivalent widths and synthesis analysis. By combining atmospheric stellar parameters with available asteroseismic data, we obtained the stellar mass, radius, and age. The data analysis reveals that KIC 9821622 is a Li-rich (A(Li)NLTE_{NLTE} = 1.80 ±\pm 0.2) intermediate-mass giant star (MM = 1.64 MM_{\odot}) located at the red giant branch near the luminosity bump. We find unexpectedly elevated abundances of Fe-peak and \textit{r}-process elements. In addition, as previously reported, we find that this is a young star (2.37 Gyr) with unusually high abundances of α\alpha-elements ([α\alpha/Fe] = 0.31). The evolutionary status of KIC 9821622 suggests that its Li-rich nature is the result of internal fresh Li that is synthesized through the Cameron-Fowler mechanism near the luminosity bump. However, its peculiar enhancement of α\alpha, Fe-peak, and \textit{r}-process elements opens the possibility of external contamination by material enriched by a supernova explosion. Although it is less likely, planet accretion cannot be ruled out.Comment: Letter, 6 pages, 3 figures, Accepted for publication in A&A. - Some language editing include

    Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis

    Full text link
    A number of extragalactic jets show periodic structures at different scales that can be associated with growing instabilities. The wavelengths of the developing instability modes and their ratios depend on the flow parameters, so the study of those structures can shed light on jet physics at the scales involved. In this work, we use the fits to the jet ridgeline obtained from different observations of S5 B0836++710 and apply stability analysis of relativistic, sheared flows to derive an estimate of the physical parameters of the jet. Based on the assumption that the observed structures are generated by growing Kelvin-Helmholtz (KH) instability modes, we have run numerical calculations of stability of a relativistic, sheared jet over a range of different jet parameters. We have spanned several orders of magnitude in jet-to-ambient medium density ratio, and jet internal energy, and checked different values of the Lorentz factor and shear layer width. This represents an independent method to obtain estimates of the physical parameters of a jet. By comparing the fastest growing wavelengths of each relevant mode given by the calculations with the observed wavelengths reported in the literature, we have derived independent estimates of the jet Lorentz factor, specific internal energy, jet-to-ambient medium density ratio and Mach number. We obtain a jet Lorentz factor γ12\gamma \simeq 12, specific internal energy of ε102c2\varepsilon \simeq 10^{-2}\,c^2, jet-to-ambient medium density ratio of η103\eta\approx 10^{-3}, and an internal (classical) jet Mach number of Mj12M_\mathrm{j}\approx 12. We also find that the wavelength ratios are better recovered by a transversal structure with a width of 10%\simeq 10\,\% of the jet radius. This method represents a powerful tool to derive the jet parameters in all jets showing helical patterns with different wavelengths.Comment: Accepted for publication in A&A, 15 pages, 12 figure

    Anderson transition in a three dimensional kicked rotor

    Full text link
    We investigate Anderson localization in a three dimensional (3d) kicked rotor. By a finite size scaling analysis we have identified a mobility edge for a certain value of the kicking strength k=kck = k_c. For k>kck > k_c dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3d Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region kkck \approx k_c we have carried out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations of a 3d AM at the transition, the number variance is linear, level repulsion is still observed and quantum diffusion is anomalous with t2/3 \propto t^{2/3}. We note that in the 3d kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3d kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that the deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Contrary to intuition correlations in the deterministic case can either suppress or enhance Anderson localization effects.Comment: 10 pages, 5 figure

    Computability of the causal boundary by using isocausality

    Full text link
    Recently, a new viewpoint on the classical c-boundary in Mathematical Relativity has been developed, the relations of this boundary with the conformal one and other classical boundaries have been analyzed, and its computation in some classes of spacetimes, as the standard stationary ones, has been carried out. In the present paper, we consider the notion of isocausality given by Garc\'ia-Parrado and Senovilla, and introduce a framework to carry out isocausal comparisons with standard stationary spacetimes. As a consequence, the qualitative behavior of the c-boundary (at the three levels: point set, chronology and topology) of a wide class of spacetimes, is obtained.Comment: 44 pages, 5 Figures, latex. Version with minor changes and the inclusion of Figure

    Modified Gravity at Astrophysical Scales

    Get PDF
    Using a perturbative approach we solve stellar structure equations for low-density (solar-type) stars whose interior is described with a polytropic equation of state in scenarios involving a subset of modified gravity theories. Rather than focusing on particular theories, we consider a model-independent approach in which deviations from General Relativity are effectively described by a single parameter ξ\xi. We find that for length scales below those set by stellar General Relativistic radii the modifications introduced by modified gravity can affect the computed values of masses and radii. As a consequence, the stellar luminosity is also affected. We discuss possible further implications for higher density stars and observability of the effects before described.Comment: 12 pages, 7figures, matches published versio

    BCS theory for finite size superconductors

    Get PDF
    We study finite size effects in superconducting metallic grains and determine the BCS order parameter and the low energy excitation spectrum in terms of size, and shape of the grain. Our approach combines the BCS self-consistency condition, a semiclassical expansion for the spectral density and interaction matrix elements, and corrections to the BCS mean-field. In chaotic grains mesoscopic fluctuations of the matrix elements lead to a smooth dependence of the order parameter on the excitation energy. In the integrable case we observe shell effects when e.g. a small change in the electron number leads to large changes in the energy gap.Comment: 4 pages, 2 figures, journal versio
    corecore